1205C-x
Acousto-Optic Modulator

APPLICATIONS
- Modulator
- Low Resolution Deflector
- Frequency Shifter

FEATURES
- Low Drive Power
- Small Size
- Good Temperature Stability

DRIVERS
522C-L or -2 (Digital Modulation) 620C-80 (Variable Frequency & Digital Modulation)
532C-L or -2 (Analog Modulation) 630C-80 (Variable Frequency & Analog Modulation)

MODELS
1205C-1 1mm Active Aperture
1205C-2 2mm Active Aperture
1205C-3 3mm Active Aperture (488-532nm only)

OUTLINE DRAWING

Active aperture C/L
6,98
17,77
50,76
11,77
22,34

Aperture

4-40 UNC x 4mm dp (2 places)
RF Input (SMA)

Bragg pivot Hole
2.38mm x 4mm dp
Optical centre of AO cell
Coincides to C/L within 0.76mm

Dimm: mm
(1" = 25.4mm)
1205C-x
Acousto-Optic Modulator

SPECIFICATIONS

Spectral Range: .442-> 1.5µm*
Standard Operating Wavelengths: 442nm, 488-633nm . (Special A/R coatings to 1.5µm).
Interaction Medium: Lead Molybdate (PbMo04)
Acoustic Velocity: 3.63mm/µs
Active Aperture: 1mm, 2mm and 3mm
Centre Frequency (CF): 80MHz
RF Bandwidth: 30MHz
Input Impedance: 50Ω Nominal
VSWR: <1.5:1 @ 80MHz
DC Contrast Ratio: >1000:1 min (>2000:1 typical)

PERFORMANCE vs. WAVELENGTH

<table>
<thead>
<tr>
<th>Wavelength (nm):</th>
<th>442</th>
<th>488</th>
<th>532</th>
<th>633</th>
<th>830*</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Drive Power, 1205C-1 (W):</td>
<td><0.3</td>
<td><0.3</td>
<td><0.4</td>
<td><0.5</td>
<td><0.9</td>
</tr>
<tr>
<td>RF Drive Power, 1205C-2 (W):</td>
<td><0.5</td>
<td><0.6</td>
<td><0.7</td>
<td><1.0</td>
<td><1.6</td>
</tr>
<tr>
<td>RF Drive Power, 1205C-3 (W):</td>
<td><0.7</td>
<td><0.9</td>
<td><1.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bragg angle (mrad):</td>
<td>4.9</td>
<td>5.4</td>
<td>5.9</td>
<td>7.0</td>
<td>9.1</td>
</tr>
<tr>
<td>Beam Separation (mrad):</td>
<td>9.7</td>
<td>10.7</td>
<td>11.7</td>
<td>13.9</td>
<td>18.3</td>
</tr>
<tr>
<td>Static Insertion Loss (%):</td>
<td><10</td>
<td><5</td>
<td><3</td>
<td><3</td>
<td></td>
</tr>
</tbody>
</table>

PERFORMANCE vs. BEAM DIAMETER

<table>
<thead>
<tr>
<th>Beam Diameter (mm):</th>
<th>2.0</th>
<th>1.0</th>
<th>0.34</th>
<th>0.2</th>
<th>0.14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise Time (ns):</td>
<td>360</td>
<td>180</td>
<td>60</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>Modulation Bandwidth (MHz) @ MTF = 0.5:</td>
<td>1.0</td>
<td>1.9</td>
<td>5.8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Deflection Efficiency (% @ CF):</td>
<td>90</td>
<td>85</td>
<td>85</td>
<td>80</td>
<td>75</td>
</tr>
</tbody>
</table>

*Operation at near IR wavelengths with reduced efficiency and modulation bandwidth.

The typical MTF (depth of modulation) curve for the 1205C modulator assuming a 0.14mm beam diameter is shown at the left. For larger beam diameters the abscissa scales linearly. The curve is closely approximated by the function:

\[M = \exp \left(-\frac{f}{f_0}\right)^2 \]

where: \(f \) = modulating frequency in MHz
\(f_0 \) = parameter of modulator related to beam waist
diameter = 18MHz (from experimental data)

The value of M from the curve may be used to the sine wave contrast ratio at a particular modulating according to the relation:

\[CR = 1 + M/1 - M \]

For digital on-off modulation, the contrast ratio will be greater than the value calculated from the above equation.

ALL SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE
ISOMET CORP, 5263 Port Royal Rd, Springfield, VA 22151, USA.
Tel: (703) 321 8301 Fax: (703) 321 8546
E-mail: ISOMET@ISOMET.COM Web Page: WWW.ISOMET.COM

Quality Assured.
In-house: Crystal Growth,
Optical Polishing,
A/R coating, Vacuum Bonding